Necessary and Sufficient Conditions for Linear Convergence of `1-Regularization

نویسندگان

  • MARKUS GRASMAIR
  • MARKUS HALTMEIER
  • OTMAR SCHERZER
چکیده

Motivated from the theoretical and practical results in compressed sensing, efforts have been undertaken by the inverse problems community to derive analogous results, for instance linear convergence rates, for Tikhonov regularization with `1-penalty term for the solution of ill-posed equations. Conceptually, the main difference between these two fields is that regularization in general is an unconstrained optimization problem, while in compressed sensing a constrained one is used. Since the two methods have been developed in two different communities, the theoretical approaches to them appear to be rather different: In compressed sensing, the restricted isometry property seems to be central for proving linear convergence rates, whereas in regularization theory range or source conditions are imposed. The paper gives a common meaning to the seemingly different conditions and puts them into perspective with the conditions from the respective other community. A particularly important observation is that the range condition together with an injectivity condition is weaker than the restricted isometry property. Under the weaker conditions, linear convergence rates can be proven for compressed sensing and for Tikhonov regularization. Thus existing results from the literature can be improved based on a unified analysis. In particular the range condition is shown to be the weakest possible condition that permits the derivation of linear convergence rates for Tikhonov regularization with a–priori parameter choice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of a semi-analytical method on the fuzzy linear systems

In this paper, we apply the  homotopy analysis method (HAM) for solving fuzzy  linear systems and present  the necessary and sufficient conditions for the convergence of series solution obtained via the HAM. Also, we present a new criterion for choosing a proper value of convergence-control parameter $hbar$ when the HAM is applied to linear system of equations. Comparisons are made between the ...

متن کامل

Convergence of product integration method applied for numerical solution of linear weakly singular Volterra systems

We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.

متن کامل

Necessary Conditions for Convergence Rates of Regularizations of Optimal Control Problems

We investigate the Tikhonov regularization of control constrained optimal control problems. We use a specialized source condition in combination with a condition on the active sets. In the case of high convergence rates, these conditions are necessary and sufficient.

متن کامل

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

Non-convex Sparse Regularization

We study the regularising properties of Tikhonov regularisation on the sequence space l with weighted, non-quadratic penalty term acting separately on the coefficients of a given sequence. We derive sufficient conditions for the penalty term that guarantee the well-posedness of the method, and investigate to which extent the same conditions are also necessary. A particular interest of this pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011